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We present numerical and analytical results for the autocorrelation functions which characterize domain
growth in ternary mixtures. The numerical results are obtained from Monte Carlo simulations of the spin-1
Blume-Emery-Griffiths model with spin-exchange kinetics. Further, we model the autocorrelation functions
using an approach based on the continuous-time random walk formalism. The aging property of these functions
is related to the time dependence of the domain-size distribution. Our analytical results are found to be in good
agreement with the numerical data.
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I. INTRODUCTION

A homogeneous multicomponent mixture becomes ther-
modynamically unstable when it is quenched below the co-
existence curve. The subsequent far-from-equilibrium evolu-
tion of the system is characterized by the emergence and
growth of domains enriched in competing phases. For a wide
class of systems, domain growth occurs in a scale-invariant
manner[1–4]. For example, the time-dependent correlation
function exhibits a dynamical-scaling behavior[5]:

CsrW,td =
1

V
E dRW fkcsRW ,tdcsRW + rW,tdl − kcsRW ,tdlkcsRW + rW,tdlg

s1d

;gS r

Lstd
D , s2d

wherecsrW ,td is the order parameter(e.g., local magnetization
for a ferromagnet, density difference of two species for a
binary mixture, etc.) at space pointrW and time t after the
quench. In Eq.(1), V is the system volume and the angular
brackets denote an averaging over independent initial condi-
tions csrW ,0d and thermal fluctuations. Equation(2) implies
that the morphology of the domain structure remains invari-
ant with time, except for a change in the length scaleLstd,
which grows with time.

The domain growth or coarsening process is characterized
by the time dependence of the length scaleLstd, and the
functional form of the universal functiongsxd. These proper-
ties depend upon the following factors:(a) the nature of de-
fects in the evolving system, e.g., interfaces, vortices, mono-
poles, etc.,(b) the conservation laws obeyed by the order
parameter(s), (c) the presence of hydrodynamic flow fields,
and (d) the presence of experimentally relevant effects like
quenched or annealed disorder, gravitational fields, internal
strain fields in binary alloys, wetting surfaces, etc.

For pure and isotropic systems with a scalar order param-
eter, the domain growth laws are well understood. Systems
with a nonconserved order parameter, e.g., ordering ferro-
magnets, obey the Lifshitz-Allen-Cahn(LAC) law Lstd
, t1/2 [6]. On the other hand, systems with a conserved order
parameter, e.g., phase-separating binary mixtures, are char-

acterized by the Lifshitz-Slyozov(LS) law Lstd, t1/3 [7].
It is natural to ask whether there are other properties of

nonequilibrium systems which exhibit universal features. In
this context, a property that has been investigated is the au-
tocorrelation function

Ast,twd =
1

V
E dRW fkcsRW ,twdcsRW ,tw + tdl

− kcsRW ,twdlkcsRW ,tw + tdlg. s3d

In Eq. (3), the timestw and stw+ td are measured subsequent
to the quench—tw is the reference point for measurement of
the autocorrelation function, and is referred to as thewaiting
time. [The most general correlation function corresponds to
unequal space and time, and combines the definitions in Eqs.
(1) and(3).] Equilibrium systems are stationary and the cor-
respondingAst ,twd depends only upon the time differencet.
However, for nonequilibrium systems, the autocorrelation
function depends on botht and tw.

The tw dependence ofAst ,twd and other response func-
tions has been referred to as theaging property. Aging has
been extensively discussed in the context of domain-growth
kinetics[2], and the nonequilibrium evolution of glassy poly-
mers[8–10] and spin glasses[11,12]. In these systems, the
relaxation dynamics becomes progressively slower with the
agetw, i.e., there is atw-dependent increase in the time scale.
The simplest possibility in this context is that physical quan-
tities like the autocorrelation function exhibit scaling as

Ast,twd = hS t

tw
D , s4d

wherehsxd is the scaling function. Several experimental and
numerical studies on, e.g., spin glasses[11–14] are consistent
with Eq. (4).

This paper studies the autocorrelation functions for do-
main growth in ternarysABVd mixtures, modeled by the
spin-1 Blume-Emery-Griffiths(BEG) model [15]. The BEG
model describes several physical situations, e.g., the super-
fluid transition in3He-4He mixtures, magnetic transitions in
dilute ferromagnets, ternary alloys, etc.[16–19]. Here, we
present detailed numerical results forAst ,twd in the BEG
model with conserved kinetics. Furthermore, we formulate
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an approach based on thecontinuous-time random walk
(CTRW) formalism to understand the behavior of the auto-
correlation functions. A summary of our analytical results
and representative numerical results were presented in an
earlier Letter[20].

This paper is organized as follows. In Sec. II, we present
an overview of relevant results. In Sec. II, we also discuss
mean-field(MF) phase diagrams for the BEG model at pa-
rameter values relevant to our simulations. In Sec. III, we
present numerical results from Monte Carlo(MC) simula-
tions of the conserved BEG model. Section IV describes the
details of our CTRW modeling, and makes a comparison
between the analytical and numerical results for the autocor-
relation function. Some of the mathematical details relevant
to Sec. IV are relegated to an Appendix. Finally, Sec. V
concludes this paper with a summary and discussion of our
results.

II. OVERVIEW OF RELEVANT RESULTS

The spin-1 BEG Hamiltonian for a set ofN spinshsij is as
follows [18]:

H = − Jo
ki j l

sisj − Ko
ki j l

si
2sj

2 −
M

2 o
ki j l

ssi
2sj + sisj

2d

− ho
i=1

N

si − Do
i=1

N

si
2, si = 0, ± 1. s5d

Here, the interactions are between nearest-neighbor pairski j l
only. The interpretation of various parameters has been dis-
cussed extensively in the literature. In the context of dilute
magnets,K and J are interactions between atoms and their
moments, respectively;h is an external magnetic field; andD
is the chemical potential. We consider the case withJ.0
and M =0. The BEG model exhibits a rich phase diagram,
which has been extensively explored by a variety of tech-
niques [15–19]. There are four relevant ensembles, corre-
sponding to fixed values of eitherh or oisi, in conjunction
with fixed values of eitherD or oisi

2.
For ternarysABVd mixtures, the three spin states can be

identified with the three components, e.g.,si = +1,−1,0 cor-
respond toA, B, V atoms, respectively.[We deliberately des-
ignate the third component asV, because most studies of
domain growth in ternary mixtures have focused on binary
sABd mixtures with vacanciessVd [21–25]. Of course, the
discussion here is relevant to arbitrary ternary mixtures.]
Then, the parameters in Eq.(5) are related to the energieseab

associated with a nearest-neighborab pair [26]. Further, the
relevant ensemble for discussion of the ternary mixture is
one with fixedoisi andoisi

2.
The BEG model has two order parameters given bym

=ksil and r=ksi
2l. For a discussion of the phase diagram of

the model, we shall employ the dilute magnet interpretation,
in which one has a mixture of magnetic atoms(with si
= ±1;A or B) and nonmagnetic atoms or vacancies(with
si =0;V). This corresponds to a situation with fixedh and
oisi

2. The MF phase diagram of the model in thesr ,Td plane
is shown in Fig. 1 forh=0 andK=1.5,0.5,−1.0.(All energy

scales are measured in units ofJ.) Regions in the phase dia-
gram are marked asP, F, and 3-phase. Here,P is the para-
magnetic phase at high temperatures and lowr (or high va-
cancy concentration). Further,F is the ferromagnetic phase
which hasA-rich andB-rich domains withV homogeneously
distributed in the two phases. In the 3-phase region, there is
phase separation between aV-rich phase and a magnetic-
atom-rich phase. The latter phase consists ofA-rich (up) and
B-rich (down) domains. In the 3-phase region, one can dis-
tinguish two types of morphologies, depending on the value
of K [26]. For K,1, vacancies prefer to coat theAB inter-
faces. We refer to this as the coatsCd morphology, where
only AV andBV interfaces are present. ForK.1, theV-rich
phase forms blobs andAV, BV, and AB interfaces are all
present. We refer to this as the blobsBd morphology. The
distinction betweenB and C morphologies is irrelevant at
sufficiently large length scales because the coating layer of
vacancies in theC morphology saturates at an equilibrium
thickness. Subsequent to this saturation, additional vacancies
form blobs as this is entropically favorable. The MC simula-
tions reported in Sec. III were done forK=1.5,0.5,−1.0,
corresponding to Figs. 1(a)–1(c). Other parameter values
were T=0.5, mh=N−1oisi =0, and rh=N−1oisi

2

FIG. 1. Mean-field phase diagrams for the spin-1 BEG model in
Eq. (5). We consider an ensemble with fixed temperatureT and
vacancy concentrationcV=1−r. All parameters are measured in
units of J, and we setM =h=0. The phases are labeled asP (para-
magnetic), F (ferromagnetic), and 3-Phase, corresponding to a seg-
regation into aV-rich P phase and aV-poor F phase. The phase
diagrams correspond to(a) K=1.5,(b) K=0.5, and(c) K=−1.0. The
parameter values for our MC simulations wereT=0.5 and cV

=0.05,0.1,0.2(or r=0.95,0.9,0.8), and are marked as3’s in
(a)–(c).
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=0.95,0.9,0.8.(The subscripth refers to the homogeneous
state at high temperatures.) These parameter values are
marked as3’s in the phase diagrams of Figs. 1(a)–1(c).

In earlier papers, we have investigated the ordering kinet-
ics of the BEG model with nonconserved order parameters
[27] as well as conserved order parameters[26]. In Ref.[27],
we considered a constrained spin-flip kinetics wheresi = ±1
→ 71 only through the statesi =0. Large values ofD s.0d
created a barrier to domain growth, and ensured that the spin
spent very little time in the statesi =0. This allowed us to
formulate a dichotomic(two-state) CTRW model for com-
puting the autocorrelation function. The analytical results ob-
tained from this stochastic model were in excellent agree-
ment with the corresponding numerical results.

In Ref. [26], we considered spin-exchange kinetics which
is appropriate to a ternary mixture. Again, we imposed the
above constraint, permitting onlyV-mediated interchanges of
the typeA↔V andB↔V [21–25]. For this model, we stud-
ied the kinetics of phase separation for the blobsBd, coatsCd,
and dispersedsDd morphologies. TheD morphology corre-
sponds to theF region in Fig. 1, and consists ofA-rich and
B-rich domains withV uniformly dispersed in the system.
For all three morphologies, we demonstrated the dynamical
scaling of the correlation functionCsr ,td=gsr /Ld and of the
domain-size probability distributionPsl ,td=L−1fsl /Ld, where
l is the domain size. Further, we demonstrated that the char-
acteristic domain scale obeyed the LS growth lawLstd
, t1/3, though the time scales were dependent on the mor-
phology. The present paper focuses upon the autocorrelation
functions forV-mediated phase separation.

There has been considerable discussion in the literature
regarding the functional form of the autocorrelation function
in domain growth processes. To summarize this discussion, it
is relevant to distinguish two contributions toAst ,twd: (a) the
equilibrium or stationary contributionAststd, which arises
from fluctuations in the interior of bulk domains, and(b) the
nonequilibrium or aging contributionAagst ,twd, which arises
from domain-boundary motion.

The quantityAststd has been investigated both analytically
and numerically in the context of the two-state kinetic Ising
model. Small bulk fluctuations can be discussed in a linear
approximation, resulting in an exponential decay of the au-
tocorrelation function,Aststd.exps−t /td, wheret is the time
scale. However, Huse and Fisher[28] have argued that drop-
let fluctuations play an important role at moderately high
temperatures, and give rise to a stretched-exponential relax-
ation [29,30]. The Huse-Fisher argument can be summarized
as follows. In a domain of(say) up spins, the probability of
a fluctuation consisting of a droplet of down spins of sizeL
is proportional to exps−bsLd−1d, whereb=skBTd−1, s is pro-
portional to the surface tension, andd is the dimensionality.
The lifetime of a droplet depends upon its size, and has the
form t,L1/f, where f is the corresponding growth expo-
nent. The decorrelation arising due to this droplet is then
obtained as

Aststd . exps− kbstud, s6d

where k is a constant and the stretching exponentu=sd
−1df. For u.1, the contribution of the droplets is irrelevant

and one reverts to the exponential form forAststd. Thus, the
Huse-Fisher argument suggests that

u = Hsd − 1df, d , dc,

1, d . dc,
J s7d

where the critical dimension is defined bysdc−1df=1.
Subsequently, Takanoet al. [31] also studied equilibrium

fluctuations in the Ising model. These authors obtained the
autocorrelation function as the sum of exponentially decay-
ing terms with relaxation ratest having a continuous(length-
scale-dependent) spectrum of the formt,L1/f. They also
found thatAststd exhibits a stretched-exponential behavior,
but with a different stretching exponent:

u =
sd − 1df

sd − 1df + 1
. s8d

In an attempt to resolve the discrepancy between these two
results, Tanget al. [32] undertook a detailed study of the
Langevin equation for droplet fluctuations. They examined
the relaxation spectrum of the corresponding Fokker-Planck
equation for noninteracting spherical droplets. Tanget al.
found results consistent with the heuristic arguments of Huse
and Fisher[28].

There have been various attempts to test these predictions
numerically. For example, Takanoet al. [31] undertook MC
simulations of thed=2 Ising model with nonconserved ki-
netics, i.e.,f=1/2. They found results consistent with the
stretching exponentu=1/3 predicted by their analytical ar-
guments. More extensive MC simulations are due to Ogielski
[33], who studied the nonconserved Ising model ind=2, 3,
4. On simulation time scales, his results were consistent with
stretched-exponential decay in all cases. Further, the stretch-
ing exponents were consistent with Eq.(8) rather than Eq.
(7). Finally, we mention the work of Graham and Grant[34],
who reported results from a MC study(using a damage-
spreading algorithm) of thed=2 spin-flip Ising model. These
authors found results consistent with exponential decay on
the time scales of their simulation. However, these corre-
spond to somewhat limited time windows.

Next, consider the aging part of the autocorrelation func-
tion Aagst ,twd, which results from domain-wall motion. Let
us focus on theT=0 case, where there is no decorrelation
due to bulk fluctuations. One expects that the aging depen-
dence comes from the characteristic length scaleLstd. By
extension of scaling ideas, it has been argued that the auto-
correlation function decays with time as[35,2]

Aagst,twd = F Lstwd
Lst + twdGl

, Lst + twd @ Lstwd. s9d

For power-law domain growth, this is consistent with the
scaling form in Eq.(4). The exponentl was first introduced
by Fisher and Huse[35] to describe the dynamical evolution
of spin glasses. In the present context, it is a nontrivial ex-
ponent which characterizes phase ordering systems.

For specificity, we first consider the ordering dynamics of
a ferromagnet, which is described by the spin-flip Ising
model or its coarse-grained counterpart, the time-dependent
Ginzburg-Landau(TDGL) equation. An important result in
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this regard is due to Ohtaet al. (OJK) [36], who proposed a
nonlinear transformation to approximately linearize the
(zero-temperature) TDGL equation. The OJK theory yields
the following expression for the autocorrelation function:

Aagst,twd =
2

p
sin−1F4twst + twd

st + 2twd2 Gd/4

. s10d

In the limit t+ tw@ tw, we have

Aagst,twd .
2

p
S 4tw

t + tw
Dd/4

. s11d

The OJK function in Eq.(10) exhibits the scaling behav-
ior in Eq. (4). Recall that the coarsening ferromagnet obeys
the LAC growth lawLstd, t1/2. Then, Eq.(11) is also seen to
be consistent with Eq.(9), and we can identify the exponent
l=d/2 in the OJK approximation. As a matter of fact, this
expression is exact for the TDGL model withOsnd symmetry
in the limit n=` [2]. Further, the exact value ind=1 (where
Tc=0) is l=1 [37,38]. More generally, Fisher and Huse[35]
proposed bounds on the value ofl, viz., d/2ølød. Finally,
the value ofl has been studied numerically fordù2 via
simulations of the nonconserved Ising model[39].

Our understanding of the conserved case is considerably
poorer. Yeunget al. (YRD) [40] have obtained the bounds
lùd/2+2 for dù2 and lù3/2 for d=1. (This assumes
that tw is in the scaling regime. Fortw=0, YRD argue that
lùd/2 for all d.) YRD also presented results from simula-
tions of the d=2 Cahn-Hilliard equation(without thermal
fluctuations), and found thatl.4, consistent with their
bounds. Another study is due to Marko and Barkema(MB)
[41], who undertook MC simulations of the Ising model with
spin-exchange kinetics ind=2, 3. These authors used an ac-
celerated algorithm to access the asymptotic regime of
phase-separation kinetics. MB claim that their data for the
autocorrelation function is consistent with a power-law de-
cay as in Eq.(9). However, their numerical data do not vali-
date this conclusion. For example, their plots of lnfAst ,twdg
vs lnst+ twd (see Figs. 2 and 5 of Ref.[41]) exhibit a continu-
ous curvature, whereas a power-law decay would correspond
to a straight line. It should be noted that their simulations
were conducted at nonzero temperatures, so there are contri-
butions to Ast ,twd from both bulk fluctuations(stretched-
exponential type) and domain-wall motion(power-law type).
These must be accounted for in any complete description of
the autocorrelation function in phase-ordering systems.

The above discussion has focused on domain growth in
pure systems. In disordered systems like spin glasses, differ-
ent features arise due to the multiplicity of metastable states
[42,43]. An important study in this context is due to Fisher
and Huse(FH) [35], who argue that the two-state Ising spin
glass has two unique disordered-looking ground states,
which are related by the symmetry transformationsi →−si. In
the FH scenario, relaxation at low temperatures proceeds by
coarsening of these phases through domain growth. How-
ever, domain walls get locally trapped by disorder and their
subsequent motion is via thermal activation over length-
scale-dependent barriers. The corresponding domain growth
law is [35]

Lstd , F T

DsTd
lnS t

t
DG1/c̄

, s12d

whereDsTd is the scale of disorder barriers,t is a timescale,

and 1/c̄ is the growth exponent. The FH prediction for the
autocorrelation function in this case is obtained by replacing
Eq. (12) in Eq. (9). Note that this does not result in an aging
form with t / tw scaling.

We should stress that the FH model is still the subject of
controversy. An alternative description of spin glasses is the
replica-symmetry-breaking(RSB) model of Parisi [44],
where there are an infinite number of equivalent ground
states. The RSB scenario has been rigorously proven only for
the infinite-ranged Sherrington-Kirkpatrick model[45], and
its applicability to short-ranged spin glasses remains the sub-
ject of much discussion.

III. DETAILED NUMERICAL RESULTS

Before presenting results, we briefly describe details of
our MC simulation techniques. We study ordering dynamics
in the d=2 BEG model with Kawasaki spin-exchange kinet-
ics. The microscopic kinetics individually conserves num-
bers ofsi =0, ±1. Following our earlier work[26], we im-
pose a constraint on the kinetics and allow only vacancy-
mediated dynamics. However, we should stress that similar
results are obtained for unconstrained kinetics, where all
types of interchanges are permitted. This is because the bar-
rier to A↔B interchanges at domain interfaces(i.e., EB
=12J in d=2) is much higher than that forA↔V andB↔V
interchanges(i.e., EB=6J in d=2). Thus, especially at low
temperatures, the segregation dynamics is primarily driven
by V’s—regardless of whether or notA↔B interchanges are
allowed.

The system size was taken to beN2 (with N=512), and
periodic boundary conditions were imposed in both direc-
tions. The initial condition for the MC simulation consists of
a random distribution ofA,B,V with number densitiess1
−cVd /2, s1−cVd /2, cV, respectively. This mimics the high-
temperature disordered state prior to the quench. The system
is quenched to a low temperatureT at time 0. A randomly
chosen pair of spins is interchanged according to the above
stochastic move, corresponding to a change in configuration
from hsij→ hsi8j. The change is accepted with probabilitypa

=exps−bDHd if DH.0, or pa=1 if DH,0, where DH
=Hshsi8jd−Hshsijd is the change of energy associated with the
move [46]. A Monte Carlo step(MCS) corresponds toN2

attempted updates. The results presented here correspond to
a random-updating procedure, but similar results were ob-
tained with sequential updates. All statistical data were ob-
tained as an average over ten independent runs.

In contrast to most earlier works[21–25], we have studied
physical situations with appreciableV concentrations so as to
investigate domain coarsening in both regions of the phase
diagram, namely, regions with two-phase and 3-phase coex-
istence. As mentioned earlier, the parameter values studied
are marked as3’s in the phase diagrams of Fig. 1.

We start by showing typical evolution morphologies. Fig-
ure 2 shows the evolution pictures forK=1.5, 0.5, −1.0 and
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vacancy concentrationcV=0.05. The gray and white regions
correspond toA-rich and B-rich phases, respectively. The
crosses denote the vacancies. Panels(a) and (b) arise for
quenches in the 3-phase region(see Fig. 1) and correspond to
theB andC morphologies, respectively. Notice the formation
of V clusters in the gray and white regions in theC
morphology—these are due to the existence of aV-rich
phase. Panel(c) corresponds to a quench in theF phase, and
we see vacancies dispersed uniformly in the up and down
domains, corresponding to theD morphology. Figure 3 is a
similar set of evolution pictures atcV=0.1. The same broad
features are observed in these pictures. However, notice that
the C morphology in panel(b) clearly exhibitsV-rich blobs
at t=23106 MCS, because theAB interfaces are already
saturated with vacancies.

Next, we discuss our results for the domain-size distribu-
tion functionPsl ,td, which is computed by examining order-
parameter profiles along horizontal and vertical cross sec-
tions of the lattice[26,27]. We consider here distributions for
theA-rich andB-rich domains. In Ref.[26], we demonstrated
that this quantity obeys the dynamical-scaling property,
Psl ,td=L−1fsl /Ld, for all three morphologies. The scaling
function is independent of the nature of the morphology. This
is seen in Fig. 4, where we superpose data forPsl ,tdL vs l /L

for the B, C, andD morphologies. The characteristic length
scaleL is defined from the domain-size distribution function
asLstd=kll. We have also superposed data for the two-state
spin-exchange Ising model in Fig. 4, and this also coincides
well with the scaling function. Clearly, the scaling function is
also independent of theV concentration. In Fig. 4(b), we plot
the data of Fig. 4(a) on a linear-log scale, and observe that
the tail of the scaling function is exponential.

Subsequently, the form of the scaling function will be a
crucial input in our stochastic modeling. One possibility is to
directly use the numerical data for the scaling function from
Fig. 4. Alternatively, it is convenient to obtain an empirical
form for the functionfsxd. The solid line in Figs. 4(a) and
4(b) is a best fit to the empirical function

fsxd =
a1x + a2x

2 + a3x
3

1 + b1x + b2x
2 + b3x

3e−cx. s13d

The best-fit parameter values are specified in the figure cap-
tion.

Next, we focus on the behavior of the autocorrelation
functions, which is our primary interest in the present study.
For the kinetic BEG model, we can define the following two
functions[cf. Eq. (3)]:

Amst,twd =
1

N2o
i=1

N2

fksistwdsistw + tdl − ksistwdlksistw + tdlg s14d

and

FIG. 2. Evolution pictures obtained fromd=2 MC simulations
of the ABV model with V-mediated exchange kinetics. The lattice
size was 5122 and periodic boundary conditions were applied in
both directions.(For clarity, the pictures show only a 1282 corner of
the lattice.) The initial condition for each run consisted of a random
mixture of A, B, and V with concentrationss1−cVd /2, s1−cVd /2,
andcV, respectively. Snapshots are labeled by the time subsequent
to the quench. TheA-rich andB-rich regions are marked in gray and
white, and theV’s are marked as3’s. Results are shown forT
=0.5, cV=0.05, and(a) K=1.5 (blob or B morphology), (b) K
=0.5 (coat or C morphology), (c) K=−1.0 (dispersed orD
morphology).

FIG. 3. Analogous to Fig. 2, but for the casecV=0.1.
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Arst,twd =
1

N2o
i=1

N2

fksi
2stwdsi

2stw + tdl − ksi
2stwdlksi

2stw + tdlg.

s15d

We confine ourselves to presenting numerical results for
Amst ,twd in the present exposition. The results obtained for
Arst ,twd are analogous to those presented here. Figure 5 plots
Amst ,twd vs t for the B, C, andD morphologies depicted in
Fig. 2 (with cV=0.05). Notice that there is a substantial slow-
ing down of the decay of the autocorrelation function with
aging. Further, the basic time scales are dependent on the
morphology, withB andD exhibiting the slowest and fastest
decays, respectively. This is because the density of vacancies
available to drive the ordering kinetics depends strongly on
the morphology(see Fig. 2). The solid lines superposed on
the data sets are fits based on the CTRW modeling of the
autocorrelation function, which is discussed in the next sec-
tion.

In Fig. 6, we plot the data of Fig. 5 on a log-log plot. The
data exhibit a continuous curvature and are not consistent
with the power-law decay in Eq.(9). As stated earlier, this is
because decorrelation occurs due to bulk(equilibrium) fluc-
tuations in conjunction with domain-wall motion. It is also
relevant to test whether the autocorrelation function exhibits
the scaling form in Eq.(4). In Fig. 7, we plot the data of Fig.
5 on the scaling plot,Amst ,twd vs t / tw. Again, we see that this

scaling form is not obeyed by our numerical data, even for
large values oftw.

Finally, Fig. 8 is analogous to Fig. 5, but corresponds to
the case withcV=0.1 (shown in Fig. 3). Again, the solid lines
superposed on the data sets are best fits to the corresponding
CTRW result discussed in Sec. IV.

IV. MODELING THE AUTOCORRELATION FUNCTION

In this section, we propose a CTRW model[47–49] for
the spin dynamics and use it to compute the autocorrelation
functions. Our stochastic model accounts for both aging and
bulk fluctuations, and is based on rather general principles as
follows. First, we interpret the single-spin dynamics as a tri-
chotomic Markov process[50,51]. Second, we assume that
the time scales involved in the decorrelation of a spin depend
on the size of the domain to which the spin belongs. Thus,
the Am and Ar as defined in Eqs.(14) and (15) are first
obtained for a domain of arbitrary size by the CTRW
method, and then averaged over the domain-size distribution
function. In our modeling, aging is incorporated through the
domain-size distribution function, as the characteristic length
scale depends on the aging time.

The details of the stochastic modeling are given in the
Appendix. Here, we describe the general formalism and the
results obtained from it. Recall that a single spinsistd can be
in three possible states with occasional transitions between

FIG. 4. (a) Scaling plot of the domain-size probability distribu-
tion Psl ,tdL vs l /L, for the evolution depicted in Fig. 3. We con-
sider onlyA-rich andB-rich domains here. The probability distri-
bution is computed by examining interface locations along
horizontal and vertical cross sections of the lattice. All statistical
data are obtained as an average over ten independent runs for 5122

lattices. The characteristic length scaleL is defined askll, the first
moment of the probability distribution. We present data for theB,
C, and D morphologies att=106 MCS. For comparison, we also
present data for the two-state spin-exchange Ising model att=106

MCS. The solid line corresponds to the empirical function in Eq.
(13). The best-fit parameters area1=1.077,a2=−0.577,a3=0.818,
c=1.5,b1=−2.245,b2=1.748,b3=0.075.(b) Data from(a), plotted
on a linear-log scale.

FIG. 5. Time dependence of the autocorrelation function
Amst ,twd vs t. The autocorrelation function is normalized to unity at
t=0. The data corresponds to the evolution depicted in Fig. 2scV

=0.05d with (a) K=1.5, waiting timestw=104,105,106; (b) K=0.5,
tw=104,105,106; (c) K=−1.0, waiting timestw=105,53105,106.
The solid lines correspond to best fits to the functional form in Eq.
(25) for (a) and (b), and Eq.(31) for (c). The best-fit parameter
values are shown in Table I.
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these states. The state of the spin at a given time is described
by a probability vectorPW std, where

PW std = 1P+std
P0std
P−std

2 . s16d

Here,Pnstd denotes the probability for the spin to be in state
ns=+1,0,−1d at timet. The stochastic evolution of this state
is described in terms of two matrices: the persistence matrix
Cstd and the transition matrixWstd. The persistence matrix
describes the probability that, after a transition att=0, the
resultant state persists upto timet. This involves three
waiting-time distributionscnstd, andCstd is given by

Cstd = 1c+std 0 0

0 c0std 0

0 0 c−std
2 . s17d

Next, we consider the transition matrixWstd. This gives
the probability of a transition at timet, given that the last
transition occurred att=0. Now, a transition out of then
state in the time intervalft ,t+Dtg occurs with probability

−ċnstdDt. Given the nature of our dynamics, in which only
±1↔0 interchanges are allowed, we can write the transition
matrix as

Wstd = −1 0 1
2ċ0std 0

ċ+std 0 ċ−std

0 1
2ċ0std 0

2 . s18d

Thus, the stochastic evolution is described in terms of the
threecnstd’s. In our modeling, we assume a simple exponen-

tial form cnstd=exps−gntd. One can now use the CTRW for-

malism to obtain the state of the spinPW std at arbitrary time

starting from the statePW s0d, by summing over all possible
transitions. The formal result is expressed in terms of an
evolution operator as follows:

PW std = UstdPW s0d, s19d

as specified in Eqs.(A3)–(A5). This allows us to calculate
both Amsl ,td andArsl ,td for a domain of sizel. The calcula-

tion of PW std and the corresponding autocorrelation functions
is presented in the Appendix.

Let us now adapt these expressions to describe decorrela-
tion in the domain-growth processes depicted in Figs. 2 and
3. Consider a typical domain(say, up) of size l. The decor-
relation of this domain occurs due to the stochastic evolution
of spins in the domain. Due to energetic considerations, the
survival times of spinssi = +1, 0, −1 in an up domain are
related asg+

−1@g0
−1@g−

−1. The opposite relationship holds in
a down domain. We associate a two-time-scale exponential
autocorrelation function[as in Eq.(A18)] with spins in this
domain. However, the time scales arel dependent because
the evolution is driven byV’s, which are concentrated on the
domain boundaries—at least in theB andC phases. Thus, the
autocorrelation function for a single up domain of sizel is

Amsl,td . pe−gasldt + s1 − pde−gbsldt. s20d

Here, the parameterp determines the relative proportion of
the two time scales. Due to symmetry, the same expression
applies for down domains. Further, theV domains do not
contribute to the autocorrelation function. The overall corre-

FIG. 6. Data from Fig. 5, replotted asAmst ,twd vs st+ twd on a
log-log scale.

FIG. 7. Data from Fig. 5, replotted asAmst ,twd vs t / tw on a
log-linear scale.

AUTOCORRELATION FUNCTIONS FOR PHASE… PHYSICAL REVIEW E 70, 051501(2004)

051501-7



lation function is obtained by integrating over the probability
distributions of up and down domains as

Amstd . s1 − cVdE
0

`

dl Psl,tdfpe−gasldt + s1 − pde−gbsldtg, s21d

where we have setP+sl ,td=P−sl ,td=Psl ,td from symmetry
considerations.

For the dispersedsDd phase, there are no distinct regions
of the V-rich phase, though there is a coating of theAB
interfaces byV’s (see Figs. 2 and 3). In that case, the deco-
rrelation of an up domain(or down domain) of size l is
obtained as

Amsl,td . s1 − cVdfpe−gasldt + s1 − pde−gbsldtg. s22d

The overall correlation function is obtained by integrating
over the probability distribution, again yielding the expres-
sion in Eq.(21). The generalization of Eq.(21) to mixtures
with asymmetric composition, and asymmetric time scales in
up and down domains, is straightforward.

The crucial inputs in our stochastic modeling are the func-
tional forms ofgasld andgbsld for the different morphologies
B, C, andD. Let us consider these separately below.

A. Blob morphology

In the blob morphology, we haveA-, B-, andV-rich do-
mains, all in contact with each other(see Figs. 2 and 3).
Consider anA-rich domain of sizel in contact with aV-rich
domain of sizel0. The length of the contact linel0, l, and
the fraction of the domain involved in the dynamics,l−1.
Therefore, we expect that

gasld . al−1, gbsld . bl−1, s23d

where a, b are constants whosecV dependence we clarify
shortly. Then, Eq.(21) becomes

Amstd . s1 − cVdE
0

`

dl Psl,tdfpe−at/l + s1 − pde−bt/lg. s24d

Recall the scaling form of the probability distribution
Psl ,td=L−1fsl /Ld, where the characteristic length scale obeys
the LS lawL.kst+ twd1/3, with k being a constant. In gen-
eral, k increases withcV in a manner which depends on the
morphology. Replacing this in the above expression, we ob-
tain sx= l /Ld

Amst,twd . s1 − cVdE
0

`

dx fsxdFp expS−
g1

x

t

st + twd1/3D
+ s1 − pdexpS−

g2

x

t

st + twd1/3DG , s25d

whereg1=a/k, g2=b/k. This is the functional form that the
numerical data in Figs. 5(a) and 8(a) were fitted to. The
fitting parametersg1, g2, p are specified in Tables I and II.
We should make three important observations in this context.

FIG. 8. Analogous to Fig. 5, but for the evolution depicted in
Fig. 3 scV=0.1d. The best-fit parameter values are shown in Table II.

TABLE I. Best-fit parameter values for the autocorrelation func-
tions shown in Fig. 5(with cV=0.05).

Morphology tw g13105 g23105 p

Blob 104 6.9 68.3 0.83

105 6.2 71.4 0.78

106 5.8 88.1 0.91

Coat 104 19.2 81.2 0.91

105 20.4 83.3 0.94

106 21.3 78.8 0.96

Dispersed 105 32.2 0.8 0.71

53105 34.4 0.6 0.75

106 28.6 0.7 0.83

TABLE II. Best-fit parameter values for the autocorrelation
functions shown in Fig. 8(with cV=0.1).

Morphology tw g13105 g23105 p

Blob 104 7.0 68.3 0.83

105 6.1 70.2 0.78

106 5.9 88.4 0.91

Coat 104 17.5 90.2 0.74

105 17.2 77.4 0.71

106 14.4 73.2 0.88

Dispersed 105 25.4 1.5 0.90

53105 18.9 2.0 0.89

106 28.0 1.8 0.91

S. PURI AND D. KUMAR PHYSICAL REVIEW E70, 051501(2004)

051501-8



(a) The fitting parameters are seen to be reasonably inde-
pendent of the waiting timetw, as expected in the above
formulation.

(b) One decay ratesg1d is an order of magnitude smaller
than the other decay ratesg2d. This is a consequence of the
very different survival times for different spin types, e.g.,
g+

−1@g0
−1@g−

−1 in an up domain. In this limit, Eq.(A17)
yields ga.g0/2+g+, gb.g−+g0/2, so thatgb@ga.

(c) The fitting parameters do not show strong dependence
on cV. This is because theV’s are confined in blobs and their
availability only changes marginally with increase incV. Fur-
ther, any dependence of the constantsa, b on cV is offset by
the correspondingcV dependence of the constantk in the LS
growth law.

B. Coat morphology

The arguments for the coat morphology are analogous to
those for the blob morphology, and the final expression for
the autocorrelation function is Eq.(25) again. The parameter
values corresponding to the best-fits shown for the data sets
in Figs. 5(b) and 8(b) are also presented in Tables I and II,
respectively. The observations made about parameter values
in the context of theB morphology apply in the present case
also, with suitable modifications.

It is relevant to understand the behavior ofAmst ,twd in the
limit t→`. Recall thatfsxd,e−cx for xù1 [see Fig. 4(b)].
Thus, the expression in Eq.(25) is determined by integrals of
the form

I =E
0

`

dx e−cx expS−
g1

x

t

st + twd1/3D . s26d

We can perform a saddle-point expansion to approximate this
integral as

I . Sp2g1

c3 D1/4 t1/4

st + twd1/12 expF− 2scg1d1/2 t1/2

st + twd1/6G , s27d

which corresponds to a stretched-exponential with exponent
1/3. The overall result fort→` is

Amst,twd , Sp2

c3 D1/4 t1/4

st + twd1/12

3Fpg1
1/4 expS− 2scg1d1/2 t1/2

st + twd1/6D
+ s1 − pdg2

1/4 expS− 2scg2d1/2 t1/2

st + twd1/6DG . s28d

Notice that this result(for t@ tw) is consistent with thed=2
result of Huse and Fisher[28] and Tanget al. [32], though it
has been arrived at by a different route.

C. Dispersed morphology

The dispersed morphology is considerably different from
theB andC morphologies, as is apparent from Figs. 2 and 3.
Notice that the early-time pictures(at t=23104 MCS) do
not exhibit the asymptotic dispersed morphology. This is be-

cause it is energetically preferable to locateV’s at interfaces,
if these are available. At later times, the excessV’s dissolve
into the bulk domains. We will focus on the late-time regime
here as it corresponds to the correct asymptotic morphology.

In the dispersed phase, decorrelation occurs due toV’s
inside bulk domains(with an l-independent time scale) and
V’s on interfaces(with an l-dependent time scale). We as-
sume that

gasld . al−1, gbsld . bcV = g2, s29d

wherea, b are constants. Then, Eq.(25) yields

Amst,twd . s1 − cVdE
0

`

dl Psl,tdfpe−at/l + s1 − pde−g2tg. s30d

If we insert the scaling form ofPsl ,td, we obtain

Amst,twd . s1 − cVdFpE
0

`

dx fsxdexpS−
g1

x

t

st + twd1/3D
+ s1 − pde−g2tG . s31d

The resultant fits are shown in Figs. 5(c) and 8(c), and the
corresponding best-fit parameters are specified in Tables I
and II. Note that the parameterg2 approximately follows the
cV dependence in Eq.(29), whereasg1,k−1 decreases with
increasingcV.

V. SUMMARY AND CONCLUSION

Let us conclude this paper with a summary and discussion
of the results presented here. We have studied the behavior of
the autocorrelation functions which characterize domain
growth in the BEG model with conserved kinetics. The BEG
model describes ternarysABVd mixtures and we focus on the
case ofV-mediated kinetics, i.e.,A↔V and B↔V inter-
changes are allowed but notA↔B interchanges. However,
the results obtained for this constrained kinetics are compa-
rable to those arising for unconstrained kinetics. This is be-
cause the energy barriers forA↔B interchanges at domain
boundaries are much higher than those forA,B↔V inter-
changes.

In this paper, we have presented detailed numerical results
(obtained from MC simulations) for the autocorrelation func-
tion Amst ,twd, defined in Eq.(14). [Similar results are ob-
tained for the other autocorrelation functionArst ,twd, but we
do not present these here for the sake of brevity.] In domain-
growth processes, this quantity exhibitsagingor dependence
on the initial reference timetw. Typically, the decorrelation
process occurs due to two physical mechanisms:(a) equilib-
rium fluctuations in bulk domains, which correspond to a
stationaryor nonagingprocess, and(b) domain-wall motion,
which corresponds to anonstationary or aging process.
There have been extensive studies of the autocorrelation
function which characterizes either of these mechanisms,
though these have been in the context of two-state kinetic
Ising models.

In this paper, we present a stochastic model that accounts
for both aging and nonaging contributions to the autocorre-
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lation function. Our modeling is based on a Markovian de-
scription for single-spin dynamics coupled with the assump-
tion that the relaxation times for a spin depend on the size of
the domain to which it belongs. Our analytical results are in
good agreement with the numerical results. Furthermore, in
the long-time limitst→`d, our theory is consistent with the
Huse-Fisher scenario[28] for decorrelation due to bulk do-
main fluctuations.

The results discussed in this paper are obtained in the
context of a spin-1 model, but the paradigm is rather general
and readily applicable to the two-state kinetic Ising model
and other spin models. We believe that the stochastic formu-
lation presented here provides a fruitful way of understand-
ing autocorrelation functions in phase-ordering systems.
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APPENDIX: STOCHASTIC MODEL FOR
AUTOCORRELATION FUNCTIONS

In this appendix, we present details of the calculation of
spin-1 autocorrelation functions using the CTRW formalism
[47–49]. We have already introduced the persistence matrix
in Eq. (17) and the transition matrix in Eq.(18). Since it is
not necessary that a transition occurs att=0, the waiting-
time distribution for the first spin transition is different from
cnstd, and is given by[47–49]

fnstd =
1

tn
E

t

`

dt8cnst8d, tn =E
0

`

dt cnstd. sA1d

Thus, the persistence and transition matrices for the first tran-
sition are obtained by replacingcn by fn in Eqs. (17) and
(18):

C1std = 1f+std 0 0

0 f0std 0

0 0 f−std
2 ,

W1std = −1 0
1

2
ḟ0std 0

ḟ+std 0 ḟ−std

0
1

2
ḟ0std 0

2 . sA2d

In the CTRW formalism, we can obtain the probability

vector PW std, starting fromPW s0d, by summing over different
paths. These paths can be labeled by the number of transi-
tions that occur in the intervalf0,tg. The matrix correspond-
ing to n transitions is

Unstd =E
0

t

dtnE
0

tn

dtn−1¯E
0

t2

dt1

3 Cst − tndWstn − tn−1d¯Wst2 − t1dW1st1d, sA3d

valid for nù1. Then, the state at timet is

PW std = UstdPW s0d = So
n=0

`

UnstdDPW s0d, sA4d

where we identifyU0std=C1std. The sum is performed by
taking the Laplace transform of this equation, and one ob-
tains

PW̃ ssd = SC̃1ssd + C̃ssd
1

1 − W̃ssd
W̃1ssdDPW st = 0d

; ŨssdPW st = 0d, sA5d

where F̃ssd denotes the Laplace transform,F̃ssd
=e0

`dt e−stFstd.
The matrices which determineŨssd can be written in

terms ofc̃nssd as follows:

C̃1ssd =
1

s
I −

1

s1
c̃+

t+
0 0

0
c̃0

t0

0

0 0
c̃−

t−

2 ,

C̃ssd =1c̃+ 0 0

0 c̃0 0

0 0 c̃−

2 ,

W̃1ssd =1
0

c̃0

2t0

0

c̃+

t+

0
c̃−

t−

0
c̃0

2t0

0
2 ,

W̃ssd =1 0
1

2
s1 − sc̃0d 0

1 − sc̃+ 0 1 − sc̃−

0
1

2
s1 − sc̃0d 0

2 , sA6d

whereI is the 333 unit matrix. This allows us to obtain the
evolution operator as
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Ũssd =
1

s
I −

1

s1
c̃+

t+

0 0

0
c̃0

t0

0

0 0
c̃−

t−

2 +
1

D1
c̃+

2

2t+
s1 − sc̃0d

c̃+c̃0

2t0

c̃+c̃−

2t−
s1 − sc̃0d

c̃+c̃0

t+

c̃0
2

2t0
s2 − sc̃+ − sc̃−d

c̃0c̃−

t−

c̃+c̃−

2t+
s1 − sc̃0d

c̃0c̃−

2t0

c̃−
2

2t−
s1 − sc̃0d

2 , sA7d

where

D = detf1 − W̃ssdg =
s

2
s2c̃0 + c̃+ + c̃−d −

s2

2
c̃0sc̃+ + c̃−d.

sA8d

Next, we consider the calculation of the autocorrelation
functions. We have the definition

Amstd = ksstdss0dl − ksstdlkss0dl

= S o
n,n0=0,±1

nn0Pnun0
stdPn0

s0dD − ksstdlkss0dl. sA9d

Here, the quantityPnun0
std denotes the conditional probability

for staten at time t, provided that the spin was in staten0 at
t=0. For differentsn,n0d values, these are identified as the
matrix elements ofUstd. Furthermore, we will consider ini-
tial conditions wherekss0dl=0. The only combinations that
contribute to the sum in Eq.(A9) are those withn, n0= ±1.
Thus, we have

Amstd = P+u+stdP+s0d + P−u−stdP−s0d − P+u−stdP−s0d

− P−u+stdP+s0d. sA10d

For the spatially extended system, recall that we are inter-
ested in random initial states with probabilitiess1−cVd /2 of

site i being occupied by anA or Bssi = ±1d, andcV of site i
being occupied byVssi =0d. Thus, we set

P+s0d = P−s0d =
1 − cV

2
, P0s0d = cV. sA11d

This yields

Amstd =
1 − cV

2
sU11 + U33 − U13 − U31d. sA12d

Similarly, we define

Arstd = ks2stds2s0dl − ks2stdlks2s0dl

= S o
n,n0=0,±1

n2n0
2Pnun0

stdPn0
s0dD − ks2stdlks2s0dl. sA13d

Following the above calculation, we obtain the final result

Arstd = cVs1 − cVdSU11 + U13 + U31 + U33

2
− sU12 + U32dD .

sA14d

Finally, we present explicit expressions for these func-
tions when thecn’s have an exponential form:

cnstd = e−gnt = e−t/tn, c̃nssd =
1

s+ gn
. sA15d

Then, some algebra yields the expression

Ãmssd =
1 − cV

2
S 1

s+ g+
+

1

s+ g−
−

g0sg+ − g−d2

ss+ g+dss+ g−d
1

f2ss+ g+dss+ g−d + g0s2s+ g+ + g−dgD =
1 − cV

2gr
Sgr + g0

s+ ga
+

gr − g0

s+ gb
D ,

sA16d

where

ga,b =
sg0 + g+ + g−d 7 gr

2
, gr = Îsg+ − g−d2 + g0

2. sA17d

Now, the inverse Laplace transform ofÃmssd is easily ob-
tained as

Amstd =
1 − cV

2gr
fsgr + g0de−gat + sgr − g0de−gbtg. sA18d

The corresponding expression for the other correlation
function is obtained as follows:

Ãrssd =
cVs1 − cVd

2
F 1

s+ g+
+

1

s+ g−

−
g0

2
S s2s+ g+ + g−d2

ss+ g+dss+ g−dss+ gadss+ gbdDG
=

cVs1 − cVd
2gr

Sgr − g0

s+ ga
+

gr + g0

s+ gb
D . sA19d

Then, the inverse Laplace transform ofÃrssd is

Arstd =
cVs1 − cVd

2gr
fsgr − g0de−gat + sgr + g0de−gbtg. sA20d
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