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Autocorrelation functions for phase separation in ternary mixtures
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We present numerical and analytical results for the autocorrelation functions which characterize domain
growth in ternary mixtures. The numerical results are obtained from Monte Carlo simulations of the spin-1
Blume-Emery-Griffiths model with spin-exchange kinetics. Further, we model the autocorrelation functions
using an approach based on the continuous-time random walk formalism. The aging property of these functions
is related to the time dependence of the domain-size distribution. Our analytical results are found to be in good
agreement with the numerical data.
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|. INTRODUCTION acterized by the Lifshitz-Slyozo(LS) law L(t) ~t43 [7].

A homogeneous multicomponent mixture becomes ther- Itis T}.""b“?ra' o atsk Whert]her: thir.eb.fre .other lpfroptertles IOf
modynamically unstable when it is quenched below the Co?hoigec%ﬂtle;;ur; SX)S 2:?5 t\r/1vatlchagxbeleln lijr?\ll\elzi[[isaateedai:rtehsé anu-
existence curve. The subsequent far-from-equilibrium evolui lati ’ f P t'p y 9
tion of the system is characterized by the emergence angcorretation function

growth of domains enriched in competing phases. For a wide 1 - - -

class of systems, domain growth occurs in a scale-invariant At ty) = v f dR(HR ) R L, +1))
manner[1-4]. For example, the time-dependent correlation

function exhibits a dynamical-scaling behav[6i: - <¢(§,tw)><l//(§,tw+t)>]- (3)

.1 - = 2 2o B = In Eqg. (3), the timest,, and(t,,+t) are measured subsequent
c(ry) = v f ARCHROPR+T,0) ~ GUR DXYR + T, 1))] to the quench-t, is the reference point for measurement of
1) the autocorrelation function, and is referred to aswiagting
time [The most general correlation function corresponds to
unequal space and time, and combines the definitions in Egs.
Eg<$>' (2) (1) and(3).] Equilibrium systems are stationary and the cor-

respondingA(t,t,) depends only upon the time differente
wherey(F, 1) is the order parametée.g., local magnetization Howc_aver, for nonequilibrium systems, the autocorrelation
for a ferromagnet, density difference of two species for afunctlon depends on bothand,.
binary mixture, etg. at space poinf and timet after the The t,, dependence oA(t,t,) and other response func-
quench. In Eq(1), V is the system volume and the angular

tions has been referred to as thging property Aging has
brackets denote an averaging over independent initial condEeen extensively discussed in the context of domain-growth
tions (r,0) and thermal fluctuations. Equatig®) implies

inetics[2], and the nonequilibrium evolution of glassy poly-
that the morphology of the domain structure remains invari Ners [8-10 and spin glassefl1,12. In these systems, the
ant with time, except for a change in the length sda(g,

relaxation dynamics becomes progressively slower with the
which grows with time.

aget,, i.e., there is &,-dependent increase in the time scale.

The domain routh o coarsering proces s chracterzcf° STPSS! OSSO 1 0 comen =t pie) g

by the time dependence of the length schl¢), and the 9

functional form of the universal functiog(x). These proper- t

ties depend upon the following factor®) the nature of de- Alt,ty) = h(t_> (4)

fects in the evolving system, e.g., interfaces, vortices, mono- W

poles, etc.,(b) the conservation laws obeyed by the orderwhereh(x) is the scaling function. Several experimental and

parametes), (c) the presence of hydrodynamic flow fields, numerical studies on, e.qg., spin glasgEk-14 are consistent

and (d) the presence of experimentally relevant effects likewith Eq. (4).

quenched or annealed disorder, gravitational fields, internal This paper studies the autocorrelation functions for do-

strain fields in binary alloys, wetting surfaces, etc. main growth in ternary(ABV) mixtures, modeled by the
For pure and isotropic systems with a scalar order paramspin-1 Blume-Emery-Griffith§BEG) model[15]. The BEG

eter, the domain growth laws are well understood. Systemsiodel describes several physical situations, e.g., the super-

with a nonconserved order parameter, e.g., ordering ferrdiuid transition in*He-*He mixtures, magnetic transitions in

magnets, obey the Lifshitz-Allen-Cah(LAC) law L(t) dilute ferromagnets, ternary alloys, efd6-19. Here, we

~t12[6]. On the other hand, systems with a conserved ordepresent detailed numerical results faft,t,) in the BEG

parameter, e.g., phase-separating binary mixtures, are chamodel with conserved kinetics. Furthermore, we formulate
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an approach based on tlentinuous-time random walk (a) K=1.5
(CTRW) formalism to understand the behavior of the auto-
correlation functions. A summary of our analytical results
and representative numerical results were presented in an
earlier Letter[20].

This paper is organized as follows. In Sec. I, we present
an overview of relevant results. In Sec. I, we also discuss
mean-field(MF) phase diagrams for the BEG model at pa-
rameter values relevant to our simulations. In Sec. Ill, we
present numerical results from Monte Ca(ldC) simula-
tions of the conserved BEG model. Section IV describes the
details of our CTRW modeling, and makes a comparison
between the analytical and numerical results for the autocor-
relation function. Some of the mathematical details relevant
to Sec. IV are relegated to an Appendix. Finally, Sec. V
concludes this paper with a summary and discussion of our

results. (c) K=-1.0
4 T T T T
Il. OVERVIEW OF RELEVANT RESULTS 3l P ]
The spin-1 BEG Hamiltonian for a set bfspins{s} is as -2 F -
follows [18]: L |
M 0 I l l X xx
H=-J> s5-KX SZSJZ—EZ (S5 +5sS) 0 02 04 08 08 1
(i) (i) (i p

N N
FIG. 1. Mean-field phase diagrams for the spin-1 BEG model in
B hz S AE Sz’ §=0,%1. (5) Eq. (5). We consider gm ensen?ble with fixed Fiemperatil]rand
=t =t vacancy concentrationy,=1-p. All parameters are measured in
Here, the interactions are between nearest-neighbor {girs units ofJ, and we seM=h=0. The phases are labeled Rgpara-
only. The interpretation of various parameters has been dignagnetis, F (ferromagnetig, and 3-Phase, corresponding to a seg-
cussed extensively in the literature. In the context of dilute’@9ation into av-rich P phase and &-poor F phase. The phase
magnetsK andJ are interactions between atoms and thejrdiagrams correspond ta) K=1.5,(b) K=0.5, andc) K=-1.0. The
moments, respectivelyt is an external magnetic field; ad ~ Parameter values for our MC simulations wefe0.5 and cy
is the chemical potential. We consider the case witho - 0:95.0.1,0.2(0r p=0.95,0.9,0.% and are marked asc’s in
and M=0. The BEG model exhibits a rich phase diagram,(a)_(c)'

which has been extensively explored by a variety of techscales are measured in unitsof Regions in the phase dia-
nigues[15-19. There are four relevant ensembles, corre-gram are marked aB, F, and 3-phase. Her® is the para-
sponqling to fixed valges of eithéror ;s, in conjunction magnetic phase at high temperatures and gogr high va-
with fixed values of eithed or =;s’. cancy concentration Further,F is the ferromagnetic phase
For ternary(ABV) mixtures, the three spin states can bewhich hasA-rich andB-rich domains withv homogeneously
identified with the three components, eg5+1,-1,0 cor-  distributed in the two phases. In the 3-phase region, there is
respond toA, B, V atoms, respectivelyWe deliberately des- phase separation betweenVarich phase and a magnetic-
ignate the third component a# because most studies of atom-rich phase. The latter phase consista-oich (up) and
domain growth in ternary mixtures have focused on binaryB-rich (down) domains. In the 3-phase region, one can dis-
(AB) mixtures with vacanciegV) [21-25. Of course, the tinguish two types of morphologies, depending on the value
discussion here is relevant to arbitrary ternary mixtgres.of K [26]. For K< 1, vacancies prefer to coat theB inter-
Then, the parameters in B¢) are related to the energieg;  faces. We refer to this as the co@) morphology, where
associated with a nearest-neighlags pair [26]. Further, the  only AV andBV interfaces are present. F&r>1, theV-rich
relevant ensemble for discussion of the ternary mixture ishase forms blobs andV, BV, and AB interfaces are all
one with fixedS;s and=;s’. present. We refer to this as the bl¢B) morphology. The
The BEG model has two order parameters givennby jstinction betweerB and C morphologies is irrelevant at
=(s) and p=(s). For a discussion of the phase diagram ofsyfficiently large length scales because the coating layer of
the model, we shall employ the dilute magnet interpretationyacancies in thec morphology saturates at an equilibrium
in which one has a mixture of magnetic atorwith s thickness. Subsequent to this saturation, additional vacancies
=+1=A or B) and nonmagnetic atoms or vacanci{@sth  form blobs as this is entropically favorable. The MC simula-
s=0=V). This corresponds to a situation with fixédand tions reported in Sec. Ill were done f&¢=1.5,0.5,-1.0,
S;§°. The MF phase diagram of the model in theT) plane  corresponding to Figs. (-1(c). Other parameter values
is shown in Fig. 1 foh=0 andk=1.5,0.5,-1.0(All energy ~ were T=0.5, m=N"1%;5=0, and p,=N"3;&
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=0.95,0.9,0.8(The subscriph refers to the homogeneous and one reverts to the exponential form f(t). Thus, the
state at high temperaturgsThese parameter values are Huse-Fisher argument suggests that
marked asx’s in the phase diagrams of Figg.alk-1(c).

In earlier papers, we have investigated the ordering kinet- 9= d-D¢, d<d, 7)
ics of the BEG model with nonconserved order parameters 1, d>d,,
[27] as well as conserved order paramefed. In Ref.[27], . , . i
we considered a constrained spin-flip kinetics whgrer1 ~ Where the critical dimension is defined by.-1)¢=1.
— T 1 only through the statg=0. Large values of (>0) Subsequently, Takanet al. [31] also studied equilibrium
created a barrier to domain growth, and ensured that the spfictuations in the Ising model. These authors obtained the
spent very little time in the statg=0. This allowed us to autocorrelation function as the sum of exponentially decay-
formulate a dichotomigtwo-stat¢ CTRW model for com- ing terms with relaxation rateshaving a continuoudength-
puting the autocorrelation function. The analytical results ob-Scale-dependenspectrum of the formr~L¢. They also
tained from this stochastic model were in excellent agreefound thatAg(t) exhibits a stretched-exponential behavior,

ment with the corresponding numerical results. but with a different stretching exponent:
In Ref. [26], we considered spin-exchange kinetics which (d-1)¢
is appropriate to a ternary mixture. Again, we imposed the 0=———— (8)

above constraint, permitting onlmediated interchanges of d-D¢+1

the typeA«<V andB«V [21-25. For this model, we stud- |n an attempt to resolve the discrepancy between these two
ied the kinetics of phase separation for the KiBh coat(C),  results, Tanget al. [32] undertook a detailed study of the
and dispersedD) morphologies. Théd morphology corre- | angevin equation for droplet fluctuations. They examined
sponds to thé= region in Fig. 1, and consists @éfrich and  the relaxation spectrum of the corresponding Fokker-Planck
B-rich domains withV uniformly dispersed in the system. equation for noninteracting spherical droplets. Tarigal.
For all three morphologies, we demonstrated the dynamicabund results consistent with the heuristic arguments of Huse
scaling of the correlation functio@(r,t)=g(r/L) and of the  and Fishef28].
domain-size probability distributioR(l,t)=L"%f(I/L), where There have been various attempts to test these predictions
| is the domain size. Further, we demonstrated that the chanumerically. For example, Takarei al. [31] undertook MC
acteristic domain scale obeyed the LS growth la) simulations of thed=2 Ising model with nonconserved ki-
~t13, though the time scales were dependent on the mometics, i.e.,¢=1/2. They found results consistent with the
phology. The present paper focuses upon the autocorrelatigiretching exponen@=1/3 predicted by their analytical ar-
functions forV-mediated phase separation. guments. More extensive MC simulations are due to Ogielski
There has been considerable discussion in the literatu83], who studied the nonconserved Ising modetin2, 3,
regarding the functional form of the autocorrelation function4. On simulation time scales, his results were consistent with
in domain growth processes. To summarize this discussion, &tretched-exponential decay in all cases. Further, the stretch-
is relevant to distinguish two contributions Adt,t,): (a) the  ing exponents were consistent with E&) rather than Eq.
equilibrium or stationary contributiol(t), which arises (7). Finally, we mention the work of Graham and Grs],
from fluctuations in the interior of bulk domains, a¢lg) the ~ Who reported results from a MC studysing a damage-
nonequilibrium or aging contributioA,t,t,), which arises  spreading algorithinof the d=2 spin-flip Ising model. These
from domain-boundary motion. authors found results consistent with exponential decay on
The quantityA,(t) has been investigated both analytically the time scales of thei_r simulation. However, these corre-
and numerically in the context of the two-state kinetic IsingSPond to somewhat limited time windows. _
model. Small bulk fluctuations can be discussed in a linear Next, consider the aging part of the autocorrelation func-
approximation, resulting in an exponential decay of the aulion Ax(t,ty), which results from domain-wall motion. Let
tocorrelation functionAg(t) = exp(-t/ 7), wherer is the time ~ us focus on theT:Q case, where there is no dec_orrelation
scale. However, Huse and FistjéB] have argued that drop- due to bulk fluctuations. One expects that the aging depen-
let fluctuations play an important role at moderately highdence comes from the characteristic length sdalg. By
temperatures, and give rise to a stretched-exponential relagxtension of scaling ideas, it has been argued that the auto-
ation[29,30. The Huse-Fisher argument can be summarizegorrelation function decays with time §35,2]
as follows. In a domain ofsay) up spins, the probability of Lt,) |
a fluctuation consisting of a droplet of down spins of dize Auftty) = S|, L(t+t,) > L(ty). 9
is proportional to exp-BoL%Y), whereB=(kgT) ™%, o is pro- L(t+ty)
portional to the surface tension, adds the dimensionality. For power-law domain growth, this is consistent with the
The lifetime of a droplet depends upon its size, and has thecaling form in Eq(4). The exponenk was first introduced
form t~LY¢, where ¢ is the corresponding growth expo- by Fisher and Husg35] to describe the dynamical evolution
nent. The decorrelation arising due to this droplet is therof spin glasses. In the present context, it is a nontrivial ex-
obtained as ponent which characterizes phase ordering systems.
_ _ For specificity, we first consider the ordering dynamics of
As(t) = ex(—kBot"), ©® a ferromagnet, which is described by the spin-flip Ising
where k is a constant and the stretching exponént(d model or its coarse-grained counterpart, the time-dependent
-1)¢. For 6> 1, the contribution of the droplets is irrelevant Ginzburg-LandauTDGL) equation. An important result in
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this regard is due to Ohtat al. (OJK) [36], who proposed a T t\ 2w
nonlinear transformation to approximately linearize the L(t) ~ [—In(—)} , (12
(zero-temperatupeTDGL equation. The OJK theory yields A(M A7

the fOIIOWing exprESSion for the autocorrelation function: WhereA(T) is the scale of disorder barriersjs a timescale,

4tw(t+tw)}d/4 and 1/Zis the growth exponent. The FH prediction for the

2
Ayt ty) = —sin 1[ (100 autocorrelation function in this case is obtained by replacing

2
(t+2t,) Eqg.(12) in Eq. (9). Note that this does not result in an aging
In the limit t+t,>t,, we have form with t/t,, scaling.
5 a4 We should stress that the FH model is still the subject of
Aadtty) = _( 4ty ) _ (11) controversy. An alternative description of spin glasses is the
m\t+t, replica-symmetry-breakingRSB) model of Parisi [44],

where there are an infinite number of equivalent ground
states. The RSB scenario has been rigorously proven only for
Yhe infinite-ranged Sherrington-Kirkpatrick moddl5], and

its applicability to short-ranged spin glasses remains the sub-
ject of much discussion.

The OJK function in Eq(10) exhibits the scaling behav-
ior in Eq. (4). Recall that the coarsening ferromagnet obey:
the LAC growth lawL (t) ~t¥2 Then, Eq(11) is also seen to
be consistent with Eq9), and we can identify the exponent
A=d/2 in the OJK approximation. As a matter of fact, this

expression is exact for the TDGL model wil{n) symmetry Il DETAILED NUMERICAL RESULTS
in the limit n=20 [2]. Further, the exact value =1 (where
T.=0) is A\=1[37,38. More generally, Fisher and Hu§a5] Before presenting results, we briefly describe details of

proposed bounds on the valueXgfviz.,d/2<\=<d. Finally, = our MC simulation techniques. We study ordering dynamics
the value of\ has been studied numerically fo=2 via  in thed=2 BEG model with Kawasaki spin-exchange kinet-
simulations of the nonconserved Ising mof&9]. ics. The microscopic kinetics individually conserves num-
Our understanding of the conserved case is considerablgers ofs=0,+1. Following our earlier wor{26], we im-
poorer. Yeunget al. (YRD) [40] have obtained the bounds pose a constraint on the kinetics and allow only vacancy-
A=d/2+2 for d=2 and\=3/2 for d=1. (This assumes mediated dynamics. However, we should stress that similar
thatt,, is in the scaling regime. Fdr,=0, YRD argue that results are obtained for unconstrained kinetics, where all
A=d/2 for all d.) YRD also presented results from simula- types of interchanges are permitted. This is because the bar-
tions of thed=2 Cahn-Hilliard equationwithout thermal rier to A« B interchanges at domain interfacése., Eg
fluctuations, and found that\=4, consistent with their =12Jin d=2)is much higher than that fok«~V andB«V
bounds. Another study is due to Marko and Barke(ikB) interchangegi.e., Eg=6J in d=2). Thus, especially at low
[41], who undertook MC simulations of the Ising model with temperatures, the segregation dynamics is primarily driven
spin-exchange kinetics id=2, 3. These authors used an ac- by V's—regardless of whether or nét— B interchanges are
celerated algorithm to access the asymptotic regime o#llowed.
phase-separation kinetics. MB claim that their data for the The system size was taken to M8 (with N=512), and
autocorrelation function is consistent with a power-law de-periodic boundary conditions were imposed in both direc-
cay as in Eq(9). However, their numerical data do not vali- tions. The initial condition for the MC simulation consists of
date this conclusion. For example, their plots dfAft,t,)] @ random distribution ofA,B,V with number densitie1
vs In(t+t,) (see Figs. 2 and 5 of Rgi#1]) exhibit a continu-  —¢y)/2, (1-c)/2, ¢y, respectively. This mimics the high-
ous curvature, whereas a power-law decay would correspori¢émperature disordered state prior to the quench. The system
to a straight line. It should be noted that their simulationsis quenched to a low temperatufeat time 0. A randomly
were conducted at nonzero temperatures, so there are contgliosen pair of spins is interchanged according to the above
butions to A(t,t,) from both bulk fluctuationg(stretched- stochastic move, corresponding to a change in configuration
exponential typpand domain-wall motioripower-law typg. ~ from {s}—{s/}. The change is accepted with probabilgy
These must be accounted for in any complete description cfexp—BAH) if AH>0, or p,=1 if AH<O, where AH
the autocorrelation function in phase-ordering systems. =H({s'})—H({s}) is the change of energy associated with the
The above discussion has focused on domain growth imove [46]. A Monte Carlo stepMCS) corresponds td\?
pure systems. In disordered systems like spin glasses, diffeattempted updates. The results presented here correspond to
ent features arise due to the multiplicity of metastable statea random-updating procedure, but similar results were ob-
[42,43. An important study in this context is due to Fisher tained with sequential updates. All statistical data were ob-
and HusegFH) [35], who argue that the two-state Ising spin tained as an average over ten independent runs.
glass has two unique disordered-looking ground states, In contrastto most earlier work21—-25, we have studied
which are related by the symmetry transformatips —s;. In physical situations with appreciableconcentrations so as to
the FH scenario, relaxation at low temperatures proceeds hiyivestigate domain coarsening in both regions of the phase
coarsening of these phases through domain growth. Howdiagram, namely, regions with two-phase and 3-phase coex-
ever, domain walls get locally trapped by disorder and theiistence. As mentioned earlier, the parameter values studied
subsequent motion is via thermal activation over length-are marked as<’s in the phase diagrams of Fig. 1.
scale-dependent barriers. The corresponding domain growth We start by showing typical evolution morphologies. Fig-
law is [35] ure 2 shows the evolution pictures fg=1.5, 0.5, -1.0 and
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FIG. 2. Evolution pictures obtained frood=2 MC simulations FIG. 3. Analogous to Fig. 2, but for the casg=0.1.
of the ABV model with V-mediated exchange kinetics. The lattice
size was 512 and periodic boundary conditions were applied in
both directions(For clarity, the pictures show only a 128orner of

the lattice) The initial condition for each run consisted of a random _ )
mixture of A, B, andV with concentrations1—oy)/2, (1-c,)/2. asL(t)=(l). We have also superposed data for the two-state

andcy, respectively. Snapshots are labeled by the time subsequeﬁpm'e_XChange Is_lng mod_el in Fig. 4, and thls. also COI.nCI(?IeS
to the quench. Tha-rich andB-rich regions are marked in gray and well with the scaling function. Clearly, the scaling function is

white, and theV's are marked as<’s. Results are shown for /SO independent of thé concentration. In Fig. @), we plot
=0.5, 0y=0.05, and(a) K=1.5 (blob or B morphology, (b) K the data of Fig. éa) on a linear-log scale, and observe that

=0.5 (coat or C morphology, () K=-1.0 (dispersed orD the tail of the scaling function is exponential. . .
morphology. Subsequently, the form of the scaling function will be a

crucial input in our stochastic modeling. One possibility is to
vacancy concentration,=0.05. The gray and white regions directly use the numerical data for the scaling function from
correspond toA-rich and B-rich phases, respectively. The Fig. 4. Alternatively, it is convenient to obtain an empirical
crosses denote the vacancies. Paitajsand (b) arise for  form for the functionf(x). The solid line in Figs. &) and

quenches in the 3-phase regi@ee Fig. 1and correspond to 4(b) is a best fit to the empirical function
theB andC morphologies, respectively. Notice the formation

of V clusters in the gray and white regions in tt&

morphology—these are due to the existence of¥/-aich X+ ax? + ax
phase. Pan€k) corresponds to a quench in tRephase, and f(x) =
we see vacancies dispersed uniformly in the up and down

domains, corresponding to tl2 morphology. Figure 3 is a

similar set of evolution pictures @, =0.1. The same broad tne pest-fit parameter values are specified in the figure cap-
features are observed in these pictures. However, notice th

the C morphology in pane(b) clearly exhibitsV-rich blobs l\iext, we focus on the behavior of the autocorrelation
at t=2Xx10° MCS, because théB interfaces are already fnctions, which is our primary interest in the present studly.

saturated with vacancies. .. Forthe kinetic BEG model, we can define the following two
Next, we discuss our results for the domain-size d'St”buTunctions[cf. Eq.(3)]:

tion functionP(l,t), which is computed by examining order-

parameter profiles along horizontal and vertical cross sec-

tions of the latticg26,27. We consider here distributions for N2

the A-rich andB-rich domains. In Ref{26], we demonstrated A(tt,) = iE [(s(t,)s(ty+ 1)) = (S (t))S Ly + )] (14)
that this quantity obeys the dynamical-scaling property, N2

P(l,t)=L"*f(I/L), for all three morphologies. The scaling

function is independent of the nature of the morphology. This

is seen in Fig. 4, where we superpose dataFidrt)L vs|/L and

for the B, C, andD morphologies. The characteristic length
scalelL is defined from the domain-size distribution function

X, 13
1 +byx+byx®+ b3x3e (13
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FIG. 4. (a) Scaling plot of the domain-size probability distribu- 2064 M
tion P(l,t)L vs /L, for the evolution depicted in Fig. 3. We con- <04 -
sider onlyA-rich andB-rich domains here. The probability distri- 02 -
bution is computed by examining interface locations along U n - s )
horizontal and vertical cross sections of the lattice. All statistical ) 00T 1007 L5107 20410
data are obtained as an average over ten independent runs for 512
lattices. The characteristic length scéalés defined agl), the first FIG. 5. Time dependence of the autocorrelation function

moment of the probability distribution. We present data for Bhe  Ay(t,t,) vst. The autocorrelation function is normalized to unity at
C, and D morphologies at=10° MCS. For comparison, we also t=0. The data corresponds to the evolution depicted in Fi¢g,2
present data for the two-state spin-exchange Ising modet Hf ~ =0.05 with (a) K=1.5, waiting times,,=10%, 1%, 1¢%; (b) K=0.5,
MCS. The solid line corresponds to the empirical function in Eq.t,=10* 1, 1%; (c) K=-1.0, waiting timest,,=10°,5x 10°, 1.
(13). The best-fit parameters asg=1.077,a,=-0.577,a3=0.818,  The solid lines correspond to best fits to the functional form in Eq.
c=1.5,b;=-2.245,b,=1.748,b;=0.075.(b) Data from(a), plotted  (25) for (a) and (b), and Eq.(31) for (c). The best-fit parameter
on a linear-log scale. values are shown in Table I.

1 N? scaling form is not obeyed by our numerical data, even for
Ayltte) = 520 ()5 (b + 1) ~ (L)X (0, + )] large values of,,. |
i=1 Finally, Fig. 8 is analogous to Fig. 5, but corresponds to
(15) the case witlt,=0.1(shown in Fig. 3. Again, the solid lines
superposed on the data sets are best fits to the corresponding

' . , CTRW result discussed in Sec. IV.
We confine ourselves to presenting numerical results for

An(t,t,) in the present exposition. The results obtained for

A,(t,t,) are analogous to those presented here. Figure 5 plot

A (t,t,) Vs t for the B, C, andD morphologies depicted in ‘QﬂV. MODELING THE AUTOCORRELATION FUNCTION

Fig. 2 (with c,=0.05. Notice that there is a substantial slow- In this section, we propose a CTRW modélr—49 for

ing down of the decay of the autocorrelation function with the spin dynamics and use it to compute the autocorrelation

aging. Further, the basic time scales are dependent on tHenctions. Our stochastic model accounts for both aging and

morphology, withB andD exhibiting the slowest and fastest bulk fluctuations, and is based on rather general principles as

decays, respectively. This is because the density of vacanciéallows. First, we interpret the single-spin dynamics as a tri-

available to drive the ordering kinetics depends strongly orchotomic Markov procesfs0,51. Second, we assume that

the morphology(see Fig. 2 The solid lines superposed on the time scales involved in the decorrelation of a spin depend

the data sets are fits based on the CTRW modeling of then the size of the domain to which the spin belongs. Thus,

autocorrelation function, which is discussed in the next secthe A, and A, as defined in Egs(14) and (15) are first

tion. obtained for a domain of arbitrary size by the CTRW
In Fig. 6, we plot the data of Fig. 5 on a log-log plot. The method, and then averaged over the domain-size distribution

data exhibit a continuous curvature and are not consisteritinction. In our modeling, aging is incorporated through the

with the power-law decay in E¢9). As stated earlier, this is domain-size distribution function, as the characteristic length

because decorrelation occurs due to higguilibrium) fluc-  scale depends on the aging time.

tuations in conjunction with domain-wall motion. It is also ~ The details of the stochastic modeling are given in the

relevant to test whether the autocorrelation function exhibitsAppendix. Here, we describe the general formalism and the

the scaling form in Eq4). In Fig. 7, we plot the data of Fig. results obtained from it. Recall that a single sgiit) can be

5 on the scaling plof(t,t,) vst/t,. Again, we see that this in three possible states with occasional transitions between

051501-6
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FIG. 6. Data from Fig. 5, replotted a§(t,t,) vs (t+t,) on a FIG. 7. Data from Fig. 5, replotted a&(t,t,) vs t/t, on a
log-log scale. log-linear scale.

these states. The state of the spin at a given time is described _
by a probability vectoP(t), where tial form o, (t) =exp(—y,t). One can now use the CTRW for-

malism to obtain the state of the spﬁ(t) at arbitrary time

P,(t -
N o starting from the stat®(0), by summing over all possible
P(t)=| Po(t) |. (16) transitions. The formal result is expressed in terms of an
P_(t) evolution operator as follows:

Here,P,(t) denotes the probability for the spin to be in state > -
n(=+1,0,-1 at timet. The stochastic evolution of this state Pt =UOP(0), (19)

is described in terms of two matrices: the persistence matrixg specified in EqA3)~A5). This allows us to calculate
W(t) and the transition matriXV(t). The persistence matrix p,ip A (I,t) andA (1,t) for a domain of sizé. The calcula-
describes the probability that, after a transitionta0, the g

resultant state persists upto tinte This involves three tion of P(t) and the corresponding autocorrelation functions

waiting-time distributionsy,(t), and ¥ (t) is given by is presented in the Appendix. _ _
Let us now adapt these expressions to describe decorrela-
() O 0 tion in the domain-growth processes depicted in Figs. 2 and
)= 0 ) 0 . (170 3. Consider a typical domaigsay, up of sizel. The decor-
0 0 ¢(t) relation of this domain occurs due to the stochastic evolution

of spins in the domain. Due to energetic considerations, the

Next, we consider the transition matrié/(t). This gives  survival times of spins=+1, 0, -1 in an up domain are
the probability of a transition at timg given that the last related asy,'s> y,*> y-. The opposite relationship holds in
transition occurred at=0. Now, a transition out of thé 3 down domain. We associate a two-time-scale exponential
state in the time intervalt,t+At] occurs with probability  autocorrelation functiofias in Eq.(A18)] with spins in this
-, (HAt. Given the nature of our dynamics, in which only domain. However, the time scales drelependent because
+1+ 0 interchanges are allowed, we can write the transitiorthe evolution is driven by’s, which are concentrated on the
matrix as domain boundaries—at least in tBeandC phases. Thus, the
autocorrelation function for a single up domain of sizs

0 %l'/fo(t) 0 0 0
. . ~ navallt _ ~ (Dt
0 ;%(t) 0 Here, the parametgr determines the relative proportion of
2

the two time scales. Due to symmetry, the same expression
Thus, the stochastic evolution is described in terms of the@pplies for down domains. Further, thé domains do not
threey,(t)'s. In our modeling, we assume a simple exponen-contribute to the autocorrelation function. The overall corre-

051501-7



S. PURI AND D. KUMAR
(a) Blob
1 T T LI
038 a 105
206 e 10
Loal —
ozl ‘jl
0 ] | |
{b) Coated
1 T T L EP—
08 s 10
206 e 10°
o4 -
o2l —
0
(c) Dispersed
% T T R
| .

50x10°0  1.0x10°  1.5x10°  2.0x10°
t
FIG. 8. Analogous to Fig. 5, but for the evolution depicted in

Fig. 3(cy=0.1). The best-fit parameter values are shown in Table II.

lation function is obtained by integrating over the probability
distributions of up and down domains as

An(t) = (1-cy) f dip( Hpe M+ (1-pe ], (2
0

where we have seP,(l,t)=P_(I,t)=P(l,t) from symmetry
considerations.

For the disperse(D) phase, there are no distinct regions
of the V-rich phase, though there is a coating of tA8
interfaces by’s (see Figs. 2 and)3In that case, the deco-
rrelation of an up domairfor down domain of sizel is
obtained as

An(l,) = (1 =cy)[pe V' + (1 -pe V. (22)
The overall correlation function is obtained by integrating
over the probability distribution, again yielding the expres-
sion in Eq.(21). The generalization of Eq21) to mixtures

PHYSICAL REVIEW E70, 051501(2004)

TABLE I. Best-fit parameter values for the autocorrelation func-
tions shown in Fig. §with ¢,,=0.05).

Morphology ty Y X 10° vo X 1P p
Blob 10t 6.9 68.3 0.83
10° 6.2 71.4 0.78
108 5.8 88.1 0.91
Coat 1d 19.2 81.2 0.91
10° 20.4 83.3 0.94
10° 21.3 78.8 0.96
Dispersed 19 32.2 0.8 0.71
5% 10° 34.4 0.6 0.75
10° 28.6 0.7 0.83

ya) =al™, () =bl", (23)

where a, b are constants whosg, dependence we clarify
shortly. Then, Eq(21) becomes

An(t) = (1 -cy) f ) di P(1,t)[pe?” + (1 - p)e™™]. (24)
0

Recall the scaling form of the probability distribution
P(I,t)=L"*f(I/L), where the characteristic length scale obeys
the LS lawL =k(t+t,)*3, with k being a constant. In gen-
eral, k increases wittty in a manner which depends on the
morphology. Replacing this in the above expression, we ob-
tain (x=1/L)

o _n_t
An(tity) = (1 Cv)fo de(X){peXp< X (t+1t,)3

camef-2 )]

wherey,=alk, y,=b/k. This is the functional form that the
numerical data in Figs. (8 and 8a) were fitted to. The
fitting parametersy;, y,, p are specified in Tables | and II.
We should make three important observations in this context.

Yt

X (Tri) P (29

TABLE Il. Best-fit parameter values for the autocorrelation

with asymmetric composition, and asymmetric time scales ifunctions shown in Fig. gwith ¢,=0.1).

up and down domains, is straightforward.

The crucial inputs in our stochastic modeling are the funcMorphology

tional forms ofy,(l) and y,(l) for the different morphologies
B, C, andD. Let us consider these separately below.

A. Blob morphology

In the blob morphology, we hava-, B-, andV-rich do-
mains, all in contact with each othé¢see Figs. 2 and)3
Consider arA-rich domain of sizd in contact with av-rich
domain of sizelg. The length of the contact ling~1, and
the fraction of the domain involved in the dynamieg™.
Therefore, we expect that

05150

ty Y1 X 10° Yo X 10P p

Blob 10" 7.0 68.3 0.83
10° 6.1 70.2 0.78

10° 5.9 88.4 0.91

Coat 1d 17.5 90.2 0.74
10° 17.2 77.4 0.71

10° 14.4 73.2 0.88

Dispersed 19 25.4 1.5 0.90
5% 10° 18.9 2.0 0.89

10° 28.0 1.8 0.91

1-8
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(a) The fitting parameters are seen to be reasonably indezause it is energetically preferable to loc#&fts at interfaces,
pendent of the waiting timé,,, as expected in the above if these are available. At later times, the exce&sdissolve
formulation. into the bulk domains. We will focus on the late-time regime

(b) One decay ratéy,) is an order of magnitude smaller here as it corresponds to the correct asymptotic morphology.
than the other decay rate,). This is a consequence of the  In the dispersed phase, decorrelation occurs du¥’so
very different survival times for different spin types, e.g., inside bulk domaingwith an I-independent time scal@and
y.'> yg'>9t in an up domain. In this limit, Eq(A17)  V's on interfacegwith an |-dependent time scaleWe as-
yields y,=yo/2+7v,, Y= "7v-+v,/2, S0 thaty,> v.. sume that

(c) The fitting parameters do not show strong dependence -1 _ _
oncy. This is because the's are confined in blobs and their vall) =al™, - w(l) = by =y, (29)
availability only changes marginally with increasecip Fur-  wherea, b are constants. Then, E(®5) yields
ther, any dependence of the constamtb on ¢y is offset by

the corresponding, dependence of the constdain the LS (1 _ fw ~atl| — et
growth law, An(tity) = (1 -cy) Odl P(,0[pe™” +(1-p)e72].  (30)

If we insert the scaling form oP(l,t), we obtain
B. Coat morphology

The arguments for the coat morphology are analogous to a_(t ) =~ (1 —Cv){pf dx f(x)exp<_ ﬁ;)
those for the blob morphology, and the final expression for 0 X

the autocorrelation function is E¢R5) again. The parameter

values corresponding to the best-fits shown for the data sets +(1- p)e—YZt] _ (30)
in Figs. %b) and &b) are also presented in Tables | and II,

respectively. The observations made about parameter value

in the context of thd morphology apply in the present case The resultant fits are shown in Figschand §c), and the
also, with suitable modifications. corresponding best-fit parameters are specified in Tables |

It is relevant to understand the behaviorft,t,) in the ~ and Il. Note that the parametes approxirlwlately follows the
limit t— 0. Recall thatf(x) ~ & * for x=1 [see Fig. 4b)]. cy dependence in Eq29), whereasy, ~k™* decreases with

Thus, the expression in ER5) is determined by integrals of Increasingcy.
the form V. SUMMARY AND CONCLUSION
| = f dx €% exp(— ﬁ#)l (26) Let us conclude this paper with a summary and discussion
0 X (t+1,)Y3 of the results presented here. We have studied the behavior of
, . ) the autocorrelation functions which characterize domain
We can perform a saddle-point expansion to approximate thigrowth in the BEG model with conserved kinetics. The BEG
integral as model describes ternatABV) mixtures and we focus on the
w2y \V4 gl " 1/2 case ofV-mediated kinetics, i.e. A~V and B~V inter-
| 2( 3 ) (1)1 exp| — 2(Cy1) | (27)  changes are allowed but nét— B interchanges. However,
w w the results obtained for this constrained kinetics are compa-
which corresponds to a stretched-exponential with exponerigble to those arising for unconstrained kinetics. This is be-

c

1/3. The overall result fot— e is cause the energy barriers f8r— B interchanges at domain
2\4 A boundaries are much higher than those AgB<«~ V inter-
Antt) ~| =] ———= change_s. _ _
(.t ( 03) (t+1,)Y*? In this paper, we have presented detailed numerical results
12 (obtained from MC simulationgor the autocorrelation func-
X{pﬁmeﬂ{— 2(071)1/2W3> tion A(t,t,), defined in Eq.(14). [Similar results are ob-
t+t,

tained for the other autocorrelation functigy(t,t,), but we
L2 do not present these here for the sake of brgvitydomain-
+(1-p)y" exp(— 2(Cyz)mm” . (28 growth processes, this quantity exhibdiging or dependence
W on the initial reference time,. Typically, the decorrelation
Notice that this resulgfor t>t,) is consistent with thel=2  process occurs due to two physical mechanigi@sequilib-
result of Huse and Fish¢28] and Tanget al. [32], though it  rium fluctuations in bulk domains, which correspond to a
has been arrived at by a different route. stationaryor nonagingprocess, an¢b) domain-wall motion,
which corresponds to aonstationaryor aging process.
There have been extensive studies of the autocorrelation
function which characterizes either of these mechanisms,
The dispersed morphology is considerably different fromthough these have been in the context of two-state kinetic
the B andC morphologies, as is apparent from Figs. 2 and 3.sing models.
Notice that the early-time picture@t t=2x 10* MCS) do In this paper, we present a stochastic model that accounts
not exhibit the asymptotic dispersed morphology. This is befor both aging and nonaging contributions to the autocorre-

C. Dispersed morphology

051501-9
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lation function. Our modeling is based on a Markovian de- . . - .

scription for single-spin dynamics coupled with the assump- P(t) =U(t)P(0) = (E Un(t)) P(0), (A4)
tion that the relaxation times for a spin depend on the size of n=0

the domain to which it belongs. Our analytical results are in

good agreement with the numerical results. Furthermore, i(}vhere we identifyUg(t)=W,(t). The sum is performed by
the long-time limit(t— c°), our theory is consistent with the 0 g

Huse-Fisher scenarif28] for decorrelation due to bulk do- ::ikr:gg the Laplace transform of this equation, and one ob
main fluctuations.
The results discussed in this paper are obtained in the
context of a spin-1 model, but the paradigm is rather general ~ ~ ~ 1 -~ -
and readily applicable to the two-state kinetic Ising model P(s) = (qfl(s) +W(s)—— Wl(s))P(t: 0)
and other spin models. We believe that the stochastic formu- 1-W(s)
lation presented here provides a fruitful way of understand- — G(s)ﬁ(t: 0) (A5)
ing autocorrelation functions in phase-ordering systems. '

ACKNOWLEDGMENTS where E(s) denotes the Laplace transform'ﬁ(s)
The authors are grateful to K. Tafa for collaboration in the=[{dt € S'F(t).

early stages of this work. The matrices which determing(s) can be written in

APPENDIX: STOCHASTIC MODEL FOR terms of 4;,(s) as follows:
AUTOCORRELATION FUNCTIONS

In this appendix, we present details of the calculation of Wy

spin-1 autocorrelation functions using the CTRW formalism Y0 o0
[47-49. We have already introduced the persistence matrix a

in EQ. (17) and the transition matrix in Eq18). Since it is ~ 11 Tﬂo

not necessary that a transition occursta0, the waiting- Wi(s) = g' s 0 P U
time distribution for the first spin transition is different from o
(1), and is given byj47-49 o o ¥

o) = = f At gn(t)), 7= f dtun®.  (AD)
TnJt 0

Thus, the persistence and transition matrices for the first tran- “J;J, 0 O
sition are obtained by replacing, by ¢, in Egs.(17) and AV ~
(18) ()= 0 ¢, O [,
0
b0 0 O 00w
Pi)=| 0 o) 0 |,
0 0 (1) 7
o b o
2’7'0
0 l£1>(t) 0 —~ —
0 —
o2 Wio=| & oo &,
wio=-| ¢ O o | (B2 7
1. o H o
0 Sdut) O 2m

In the CTRW formalism, we can obtain the probability
vector P(t), starting fromP(0), by summing over different

1 —
paths. These paths can be labeled by the number of transi- 0 5(1 = Stlp) 0
tions that occur in the interv4D,t]. The matrix correspond- _ ~ _
ing to n transitions is W(s)=| 1-sy, 0 1-sy. |, (AB)

t ty t 1 ~
U0 = f dt. f ot g f dt, 0 S(-Si) O

0 0 0

KW= 1) WAt = t-) - W = ) Walty), (A3) " \wherel is the 3x 3 unit matrix. This allows us to obtain the

valid for n=1. Then, the state at timeis evolution operator as

051501-10
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) _— _—
ﬁ 0 0 ﬂ(l '5¢0) ¢+_¢0 M(l _deo)
Ty 27, 27 27
—~ 1 1 I 1 Dl W o~ Dol
Us=-1--| 0o % o |+= Wb Yo, g gy Y , (A7)
S S Ty D Ty 27 T
= ~ -~ ~2
o o & LA Yot L
T 27y 27 27
[
where sitei being occupied by aA or B(s=+1), andc, of sitei
2 being occupied by(s=0). Thus, we set
— S ~ o~ ~ —_ — ~
D=defl-W(s)|==-Qupy+ ¢, + ) — — ). 1-c
{1 =W = 5@+ i+ ) = S ol + ) P0=P.0=22% P0=q. (a1
(A8)
. . _ This yields
Next, we consider the calculation of the autocorrelation 1
i it -C

functions. We have the definition ALt = V(Uyy+ Usg— Upa— Usy). (A12)

2
An(t) = (s(t)s(0)) = (s(t){s(0)) Similarly, we define

:( ) nnoPn\n()(t)PnO(m)—<s<t>><s<0>>. (R9) A (1) = (LF(0) — (SONL0)

n,np=0,x1

- 2.2 -
Here, the quantity,, (t) denotes the conditional probability B (n ngo ﬂn NoPoing(t) Pn0(0)> (SOXH0).  (A13)
for staten at timet, provided that the spin was in statg at S ) ) ]
t=0. For different(n,n,) values, these are identified as the Following the above calculation, we obtain the final result

matrix elements ofJ(t). Furthermore, we will consider ini- Ugy+ Ugg+ Usg+ Usg

tial conditions wheres(0))=0. The only combinations that ~ As(t) =cu(1 ‘Cv)( > = (Ut U32))-
contribute to the sum in EqA9) are those witm, ng==*1.

Thus, we have (A14)

Finally, we present explicit expressions for these func-

An(t) = P, (H)P.(0) + P__() P_(0) - P, () P_(0) tions when tha/,’s have an exponential form:

- P_,(t)P,(0). A10 ~ 1
+(HP.(0) (A10) gt = et =gt “’“(S):s+ (A15)
For the spatially extended system, recall that we are inter- n
ested in random initial states with probabilitiés—c,)/2 of = Then, some algebra yields the expression
|
x (S):l‘cv< 1 1 Yolys = v)? 1 ):1_0V<7r+70+7r_70>
" 2 \s+y, sty (s+y)(s+y)[20s+y)(s+y) + w25+ vy, + v )] 2y, \s+y, stw/
(A16)
[
where ~ cy(l-cy| 1 1
( : A(s) = v 5 v s+y+s+y
Yot ¥+t ¥v-) + % 2.2 * -
= s w =V v+ (AL7
Yab > Y=V = 7P+ 9. (AL7) ) E( (254 7, + 7.)?2 )]
Now, the inverse Laplace transform 8f(s) is easily ob- 2 \(s+ y)(s+ vy )(s+ ya)(s*+ W)
tained as _ol-co ( %Yo, %+ 70)_ (A19)
_ 2% Stya Stwm
An® = N+ e 4 (3, - y)e ], (ALS) y
= Yt Y€ %~ e . Then, the inverse Laplace transformAf(s) is
The corresponding expression for the other correlatiory () = cv(l-cv) — e Y+ (y + ) A20
function is obtained as follows: (0 2y, (&= 7o) (% + 7o)€, (A20)
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